Structured Outputs (JSON Mode)
Quick Start
- SDK
- PROXY
from litellm import completion
import os
os.environ["OPENAI_API_KEY"] = ""
response = completion(
model="gpt-4o-mini",
response_format={ "type": "json_object" },
messages=[
{"role": "system", "content": "You are a helpful assistant designed to output JSON."},
{"role": "user", "content": "Who won the world series in 2020?"}
]
)
print(response.choices[0].message.content)
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "gpt-4o-mini",
"response_format": { "type": "json_object" },
"messages": [
{
"role": "system",
"content": "You are a helpful assistant designed to output JSON."
},
{
"role": "user",
"content": "Who won the world series in 2020?"
}
]
}'
Check Model Support
Call litellm.get_supported_openai_params
to check if a model/provider supports response_format
.
from litellm import get_supported_openai_params
params = get_supported_openai_params(model="anthropic.claude-3", custom_llm_provider="bedrock")
assert "response_format" in params
Pass in 'json_schema'
To use Structured Outputs, simply specify
response_format: { "type": "json_schema", "json_schema": … , "strict": true }
Works for:
- OpenAI models
- Azure OpenAI models
- Google AI Studio - Gemini models
- Vertex AI models (Gemini + Anthropic)
- Bedrock Models
- Anthropic API Models
- Groq Models
- Ollama Models
- SDK
- PROXY
import os
from litellm import completion
from pydantic import BaseModel
# add to env var
os.environ["OPENAI_API_KEY"] = ""
messages = [{"role": "user", "content": "List 5 important events in the XIX century"}]
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
class EventsList(BaseModel):
events: list[CalendarEvent]
resp = completion(
model="gpt-4o-2024-08-06",
messages=messages,
response_format=EventsList
)
print("Received={}".format(resp))
- Add openai model to config.yaml
model_list:
- model_name: "gpt-4o"
litellm_params:
model: "gpt-4o-2024-08-06"
- Start proxy with config.yaml
litellm --config /path/to/config.yaml
- Call with OpenAI SDK / Curl!
Just replace the 'base_url' in the openai sdk, to call the proxy with 'json_schema' for openai models
OpenAI SDK
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI(
api_key="anything", # 👈 PROXY KEY (can be anything, if master_key not set)
base_url="http://0.0.0.0:4000" # 👈 PROXY BASE URL
)
class Step(BaseModel):
explanation: str
output: str
class MathReasoning(BaseModel):
steps: list[Step]
final_answer: str
completion = client.beta.chat.completions.parse(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful math tutor. Guide the user through the solution step by step."},
{"role": "user", "content": "how can I solve 8x + 7 = -23"}
],
response_format=MathReasoning,
)
math_reasoning = completion.choices[0].message.parsed
Curl
curl -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-4o",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor. Guide the user through the solution step by step."
},
{
"role": "user",
"content": "how can I solve 8x + 7 = -23"
}
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "math_reasoning",
"schema": {
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"explanation": { "type": "string" },
"output": { "type": "string" }
},
"required": ["explanation", "output"],
"additionalProperties": false
}
},
"final_answer": { "type": "string" }
},
"required": ["steps", "final_answer"],
"additionalProperties": false
},
"strict": true
}
}
}'
Validate JSON Schema
Not all vertex models support passing the json_schema to them (e.g. gemini-1.5-flash
). To solve this, LiteLLM supports client-side validation of the json schema.
litellm.enable_json_schema_validation=True
If litellm.enable_json_schema_validation=True
is set, LiteLLM will validate the json response using jsonvalidator
.
- SDK
- PROXY
# !gcloud auth application-default login - run this to add vertex credentials to your env
import litellm, os
from litellm import completion
from pydantic import BaseModel
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
]
litellm.enable_json_schema_validation = True
litellm.set_verbose = True # see the raw request made by litellm
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
resp = completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format=CalendarEvent,
)
print("Received={}".format(resp))
- Create config.yaml
model_list:
- model_name: "gemini-1.5-flash"
litellm_params:
model: "gemini/gemini-1.5-flash"
api_key: os.environ/GEMINI_API_KEY
litellm_settings:
enable_json_schema_validation: True
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-d '{
"model": "gemini-1.5-flash",
"messages": [
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
],
"response_format": {
"type": "json_object",
"response_schema": {
"type": "json_schema",
"json_schema": {
"name": "math_reasoning",
"schema": {
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"explanation": { "type": "string" },
"output": { "type": "string" }
},
"required": ["explanation", "output"],
"additionalProperties": false
}
},
"final_answer": { "type": "string" }
},
"required": ["steps", "final_answer"],
"additionalProperties": false
},
"strict": true
},
}
},
}'